Practice problems on spherical trigonometry.

Problem 1. Find the missing sides and angles in each of the following cases for a spherical triangle ABC:
(a) $a = 60^\circ$, $\beta = 90^\circ$, $\gamma = 75^\circ$.
(b) $\alpha = 65$, $\beta = 85$, $\gamma = 90$.
(c) $a = 90$, $b = 60$, $c = 100$.
(d) $\alpha = 85$, $b = 95$, $c = 105$.

Problem 2. In a spherical triangle ABC do the following properties hold?
(a) If $AB = AC$ are the base angles at B and C equal?
(b) If the angles at B and C are equal is it true that $AB = AC$?
(c) Do the angles add to 180°?
(d) Do the sides add to 180°?
(e) If $C = 90^\circ$ is it true that $AB^2 = BC^2 + CA^2$?
(f) Do two triangles with equal corresponding sides have equal corresponding angles?
(g) Do two triangles with equal corresponding angles have equal corresponding sides?

Problem 3. Suppose that P is the north pole and points X and Y in the northern hemisphere are 45° apart and form a triangle PXY with angles 60° at X and 80° at P. Find the latitude of Y. Can you determine the longitude of Y?

Problem 4. Two points on the earth have latitude and longitude coordinates as follows: $A = (45^\circ N, 60^\circ W)$, $B = (60^\circ N, 0^\circ W)$. What direction should a plane fly to follow a great circle route from A to B? (Give your answer as the angle made to the direction of north at A.)

Problem 5. In a spherical triangle the angles at α, β and γ are $\pi/5$, $\pi/3$, $\pi/2$. Find the sum of the sides.

Problem 6. In a right angled spherical triangle $\alpha = a \neq 90^\circ$. Find b and c.

Problem 7. In an equilateral spherical triangle show that $\sec\alpha = 1 + \sec\alpha$.

Problem 8. Suppose that A, B, C and X are four points on the surface of a sphere. Such that:
(i) The point X lies on the geodesic from B to C.
(ii) The angles at A, B, and X of the spherical triangle ABX are 60°, 60°, and 90°.
(iii) The geodesics AB and AC make an angle of 90°.
Find the measures (in either degrees or radians) of the geodesics AB, AX, BX, CX, and AC and find the area of the spherical triangle ABC.

Answer:

Problem 9. Suppose that A, B, C and X are four points on the surface of a sphere. Such that:
(i) The point X lies on the geodesic from B to C (between B and C).
(ii) The angles at A, B, and X of the spherical triangle ABX are 60°, 45°, and 90°.
(iii) The geodesics AB and AC make an angle of 90°.
Find the measures (in either degrees or radians) of the geodesics AB, AX, BX, CX, and AC.

Answer: