Lab 12
Function Pointers

Allows your program to determine which function to call dynamically.

Ex:
 double (*func) (double x);
 - This function pointer signature is take a double as parameter, and returns a double.
typedef

Allow you to create alias for a data type, or a function.

Ex:

typedef double Currency;
typedef string FiveString[5];
typedef double Func(double);
Function Pointer Example

Bubble Sort: ascending order

for (int j = 0 ; j < size - 1; ++j)
 for (int i = 0 ; i < size - j - 1 ; ++i) {
 if (array[i] > array[i+1]) {
 int temp = array[i];
 array[i] = array[i+1];
 array[i+1] = temp;
 }
 }
Function Pointer Example

Bubble Sort:
 Sort in ascending or descending order?

typedef bool (*comparator) (int, int);
bool ascending(int k, int l)
{
 return k<l;
}
bool descending(int k, int l)
{
 return k>l;
}
void sort(int num[], int size, comparator comp){
 int temp;
 for(int i = 1; i <= size ; i++) {
 for (int j=0; j < (size -1); j++) {
 if (comp(num[j+1],num[j])) {
 temp = num[j]; // swap elements
 num[j] = num[j+1];
 num[j+1] = temp;
 }
 }
 }
 return;
}
int main()
{
 int a[6] = {10, 100, 20, 90, 50, 25};
 comparator func = descending;
 sort(a, 6, func);
 for (int n = 0; n < 6; n++)
 cout << a[n] << " ";
 cout << endl;
 return 0;
}
Integration

In math we can integrate a polynomial to figure out its area under the curve, giving the boundary values. The idea behind integration is to create little tiny rectangles under the curve and sum up all those areas. The tinier the rectangles are, the more precise the “integration” result will be.
typedef double FUNC(double);
double integrate(FUNC f, double a, double b)
{
 double area = 0;
 // figure out the area under the curve
 /* loop from a to b, sum up all the computed little area
 under the curve with base as “offset_value” */
 return area;
}
double offset_value = .0001;
double line(double x){
 return x;
}
double square(double x){
 return x*x;
}
double cube(double x){
 return x*x*x;
}
```cpp
int main()
{
    cout << "The integral of f(x) = x between 1 and 5 is: "
         << integrate(line, 1, 5) << endl;
    cout << "The integral of f(x) = x^2 between 1 and 5 is: "
         << integrate(square, 1, 5) << endl;
    cout << "The integral of f(x) = x^3 between 1 and 5 is: "
         << integrate(cube, 1, 5) << endl;
    return 0;
}
```